A PARITY DIGRAPH HAS A KERNEL

MOSTAFA BLIDIA

Received 5 April 1984

We show that every digraph has a kernel (i.e. an absorbing and independent set) under the following parity condition: For every pair of vertices $x, y \ x \neq y$ all minimal directed paths between x and y have the same length parity.

1. Introduction

A kernel of a digraph D = (V, U) is a subset $K \subseteq V$ which is both independent and absorbing. This notion was introduced after game theory concept due to Von-Neumann—Morgenstern [1], [7], [8].

Not all digraphs have a kernel, different sufficient conditions are known in the literature implying the existence of kernels [2], [3], [4], [5], [6].

In this paper, answering a problem proposed by P. Duchet, we prove that a parity digraph has a kernel.

2. Definitions and notation

A digraph D=(V, U) is a finite directed graph without loops nor multiple arcs. V is the vertex-set of D and U its arc set. We have $U\subseteq\{(V\times V)-\{(v,v),v\in V\}\}$. By a path, we mean an elementary path.

A path $C(v_1, v_p) = (v_1, ..., v_p)$ of a digraph D is minimal when (v_i, v_j) is not an arc of D for every i, j $2 \le i + 1 < j \le p$.

The parity of a path C is the parity of the number of its arcs.

A digraph D = (V, U) is called a parity digraph if, for every pair of vertices x and $y (x \neq y)$ of D, all minimal paths between x and y have the same parity.

For a digraph D=(V,U) and $S\subseteq V$ we denote by G[S] the subdigraph

24 M. BLIDIA

induced by S. We set

$$\Gamma^{+}(x) = \{ y \in V | (x, y) \in U \}$$

$$\Gamma^{-}(x) = \{ y \in V | (y, x) \in U \}$$

$$\Gamma^{+}(A) = \bigcup_{x \in A} \Gamma^{+}(x)$$

$$\Gamma^{-}(A) = \bigcup_{x \in A} \Gamma^{-}(x).$$

We recall the following definitions [1].

An absorbing set of D is a subset K if V such that $\Gamma^-(K) \cup K = V$.

An independent set of D is a subset K of V such that $(\Gamma^-(K) \cup \Gamma^+(K)) \cap K = \emptyset$. D is said to be kernel perfect if every induced subdigraph has a kernel. A vertex y is a successor (resp. predecessor) of a vertex x if $y \in \Gamma^+(x)$ (resp. $y \in \Gamma^-(x)$).

We denote by

 $C(x_0, x_{p+1}) = (x_0, x_1, ..., x_{p+1})$ a path joining x_0 to x_{p+1} , with $(x_i, x_{i+1}) \in U$ for $0 \le i < p$.

C(a, b) the subpath of $C(x_0, x_{p+1})$ joining $a=x_i$ to $b=x_j$, $0 \le i \le j \le p+1$. C(x, y) & C(y, z) the path from x to z obtained by prolongation of the path C(x, y) by the path C(y, z).

3. The main result

Theorem. A parity digraph has a kernel.

Proof. The proof is by induction on the number of vertices of D = (V, U), D a parity graph.

The theorem is true for digraphs having less than four vertices.

Let x_0 be a vertex of D. By hypothesis $D \setminus x_0$ has a kernel N. We define a sequence of sets associated to x_0 as follows (see Figure 1).

$$B_{0} = \Gamma^{+}(x_{0})$$

$$N_{0} = \Gamma^{-}(B_{0}) \cap N$$

$$B_{1} = \Gamma^{+}(N_{0}) \cap (V \setminus x_{0} \setminus B_{0})$$

$$N_{1} = \Gamma^{+}(B_{1}) \cap (N \setminus N_{0})$$

$$\vdots$$

$$B_{i} = \Gamma^{+}(N_{i-1}) \cap (V \setminus x_{0} \setminus \bigcup_{j=0}^{i-1} B_{j})$$

$$N_{i} = \Gamma^{+}(B_{i}) \cap (N \setminus \bigcup_{j=0}^{i-1} N_{j})$$

$$\vdots$$

Let k be the smallest integer such that $N_{k+1} = \emptyset$. It is clear that if x_0 has a successor in N, then N is a kernel of D. Thus $\Gamma^+(x_0) \cap N = \emptyset$.

We break the proof into several steps.

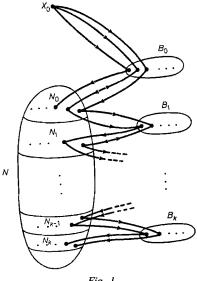


Fig. 1

(1) In the sequence defined above B_0 is not empty.

Otherwise, let N' be a kernel in the subdigraph $G[V \setminus \Gamma^-(x_0)]$, clearly $N'' = \{x_0\} \cup N'$ is a kernel in the digraph D. (A kernel in $G[V \setminus \Gamma^-(x_0)]$ exists by hypothesis of induction).

(2) If $N_1 = \emptyset$, i.e. every vertex adjacent to N_0 in $D \setminus x_0$ has a successor in N_0 we take a kernel N' in the subdigraph $G[V \setminus (N_0 \cup \Gamma^-(N_0))]$. (It exists by the hypothesis of induction).

We show that the set $N'' = N_0 \cup N'$ is a kernel of D.

- It is absorbing by construction.
- It is independent since x_0 is not joined to vertices of N_0 , otherwise we obtain a contradiction with the parity condition.
- (3) The subdigraph $G[V \setminus \bigcup_{i=0}^k (N_i \cap \Gamma^-(N_i))]$ has a kernel N' by the hypothesis of induction. We show that the set $N'' = (\bigcup_{i=0}^k N_i) \cup N'$ is a kernel of the digraph D. It is absorbing by construction.

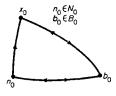


Fig. 2

26 M. BLIDIA

N'' is independent for the following reasons:

- a) N' and $\bigcup_{i=0}^{\kappa} N_i$ are independent subsets by definition.
- b) No vertex of $N \setminus x_0$ is joined to vertex of N_i , i=0, ..., k, because otherwise it would not be in $G[V \setminus \bigcup_{i=0}^k (N_i \cup \Gamma^-(N_i))]$.
- c) It remains to prove the following step.
 - (4) x_0 is not joined to vertices of N_i , i=0,...,k.

The proof is by induction on the N_i . x_0 cannot be joined to N_0 , otherwise we obtain a contradiction with the parity condition.

Suppose that x_0 is not joined to N_i , $0 \le i \le p$ and show that it is true for N_{p+1} . Suppose that on the contrary x_0 is joined to $n_{p+1} \in N_{p+1}$. By construction, there exists a path from x_0 to $n_{p+1} \colon C(x_0, x_{p+1})$ alternately going through vertices of B_i and N_i $0 \le i \le p+1$. We show that the only minimal path from x_0 to n_{p+1} induced by the vertices of $C(x_0, n_{p+1})$ is $C(x_0, n_{p+1})$. Thus, we obtain a contradiction with the parity of digraph D. (Because, from x_0 to n_{p+1} the minimal path has an even parity but from n_{p+1} to x_0 we have an arc $(n_{p+1}, x_0) \in U$.) For that, we must prove there are no arcs (b_i, b_j) when $b_i \in B_i$ and $b_j \in B_j$ for all $0 \le i < j \le p$ of the path $C(x_0, n_{p+1})$ (see Figure 3).

We observe that there are no arcs of the following forms:

$$(n_i, b_i)$$
 $i < j-1$ by definition of B_{i+1} ,

$$(b_i, n_i)$$
 $i > j$ by definition of N_i .

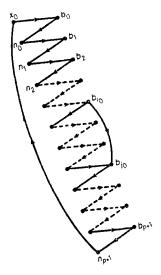


Fig. 3

We suppose that (b_i, b_i) exists i < j. Set

$$j_0 = \min (j | (b_i, b_j) \text{ exists } i < j)$$

$$i_0 = \min (i | (b_i, b_{in}) \text{ exist } i < j_0).$$

induced by $C(n_{j_0-1}, n_{p+1})$ & (n_{p+1}, x_0) n_{j_0-1} to x_0 with an even parity which must go through b_{j_0} (because by construction of B_{j_0} the arcs (n_{j_0-1}, b_j) , $j>j_0$ cannot exist). Then, a minimal path induced by $C(b_{j_0}, n_{p+1})$ & $C(n_{p+1}, x_0)$ from b_{j_0} to x_0 has an odd parity but a minimal path induced by $C(x_0, b_{i_0})$ & $C(b_{i_0}, b_{j_0})$ has an even parity (since $C(x_0, b_{i_0})$ is with an odd parity and there are no arcs (b_i, b_j) before (b_{i_0}, b_{j_0})). We obtain a contradiction with the parity condition of digraph. Hence (b_i, b_j) for all i < j cannot exist.

Corollary. Parity digraph are kernel perfect.

Proof. Obvious, since every minimal path in an induced subdigraph of a digraph D is also a minimal path in D.

4. Remarks

The ideas used in the first (constructive) part of the proof are closely related to a construction of V. Neumann Lara [4].

On the other hand, we mention the forthcoming paper [2] where we prove a similar result for undirected parity graphs with an orientation condition.

Acknowledgement. Finally, I wish to thank P. Duchet, M. Las Vergnas and H. Meyniel for their suggestions that improved the presentation of this paper.

References

- [1] C. Berge, Graphes et Hypergraphes, Dunot 1970.
- [2] M. BLIDIA, Kernels in parity graphs with an orientation condition, to appear.
- [3] P. DUCHET, Graphes noyaux parfaits, Ann. Disc. Math. 9 (1980) 93-102.
- [4] H. GALEANA-SANCHEZ, A theorem about a conjecture of H. Meyniel on kernel perfect graph, Universidad Nacional A de Mexico.
- [5] H. MEYNIEL, Contribution à l'étude de quelques problèmes en théorie des graphes (Circuits hamiltoniens, coloration, noyaux), Thèse Paris VI (1982).
- [6] V. NEUMANN-LARA, Seminucleos de uno digrafica, Anales del Instituto de Matematicas 11 (1971), Universidad Nacional A de Mexico.
- [7] J. VON NEUMANN and O. MORGENSTERN, Theory of games and economic behavior, Princeton University Press, Princeton 1944.
- [8] M. RICHARDSON, Solutions of irreflexive relations, Annals of Math. 58 (1953), 573—580.

Mostafa Blidia

Université Pierre et Marie Curie U.E.R. 48 Mathématiques (E.R.175) 4 Place Jussieu, 75 005 Paris